Day 16 - Reinforcement Learning: Basics and Algorithms
- Introduction
- Reinforcement Learning Concepts
- Markov Decision Process
- Value Iteration and Policy Iteration
- Q-Learning
- Deep Q-Networks (DQNs)
- Proximal Policy Optimization (PPO)
- Conclusion
Introduction
Reinforcement learning (RL) is a branch of machine learning that focuses on training agents to make decisions by interacting with an environment. In this article, we will discuss the fundamentals of reinforcement learning, its applications, and some popular reinforcement learning algorithms.
Reinforcement Learning Concepts
In reinforcement learning, an agent learns to make decisions by interacting with an environment. The agent takes actions in the environment, and the environment provides feedback in the form of rewards or penalties. The goal of the agent is to learn a policy that maximizes the cumulative reward over time.
There are several key concepts in reinforcement learning:
- Agent: The decision-maker that interacts with the environment.
- Environment: The world in which the agent takes actions and receives feedback.
- State: A representation of the current situation in the environment.
- Action: A decision made by the agent that affects the environment.
- Reward: The immediate feedback received by the agent after taking an action.
- Policy: A mapping from states to actions that the agent follows.
Markov Decision Process
A Markov decision process (MDP) is a mathematical framework for modeling decision-making in situations where outcomes are partially random and partially under the control of the decision-maker. MDPs are widely used in reinforcement learning to model the interaction between an agent and its environment.
An MDP is defined by a tuple (S, A, P, R), where:
- S is a set of states.
- A is a set of actions.
- P is the transition probability function, which gives the probability of transitioning from one state to another given an action.
- R is the reward function, which gives the immediate reward received by the agent after taking an action in a state.
Value Iteration and Policy Iteration
Value iteration and policy iteration are two classic algorithms for solving MDPs. Both algorithms aim to find an optimal policy that maximizes the expected cumulative reward.
Value iteration involves iteratively updating the value function (the expected cumulative reward of each state) until convergence. Once the value function converges, the optimal policy can be derived from it.
Policy iteration involves iteratively updating the policy and the value function until convergence. The algorithm alternates between policy evaluation (updating the value function) and policy improvement (updating the policy).
Q-Learning
Q-Learning is a popular model-free reinforcement learning algorithm. It learns a Q-function, which estimates the expected cumulative reward of taking an action in a given state. The agent can use the Q-function to make decisions by selecting the action with the highest expected reward.
Q-Learning is an off-policy algorithm, meaning that it can learn from experience generated by following a different policy than the one it is trying to learn. This property makes Q-Learning more flexible and robust compared to on-policy algorithms, which require the agent to follow the policy being learned.
Q-Learning is typically implemented using a table to store Q-values for each state-action pair. However, when the state space is large or continuous, it becomes infeasible to store a separate Q-value for each possible state-action pair. In such cases, function approximation techniques, such as neural networks, can be used to represent the Q-function.
Deep Q-Networks (DQNs)
Deep Q-Networks (DQNs) combine Q-Learning with deep neural networks to learn a Q-function in high-dimensional or continuous state spaces. DQNs use a deep neural network to approximate the Q-function, allowing the algorithm to scale to complex environments.
DQNs introduce several techniques to stabilize learning, such as experience replay and target networks. Experience replay stores past experiences in a buffer and randomly samples mini-batches of experiences for training, breaking the correlation between consecutive experiences. Target networks are separate networks used to compute the target Q-values for the update step, reducing the risk of unstable learning due to changes in the Q-function.
Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) is an advanced policy optimization algorithm used in reinforcement learning. PPO is an on-policy algorithm, meaning that it learns by interacting with the environment using the current policy. The key innovation of PPO is the introduction of a surrogate objective function that limits the update step’s size, preventing the policy from changing too drastically.
PPO has been shown to achieve state-of-the-art performance on a wide range of challenging reinforcement learning tasks, including robotic control, video games, and simulated locomotion.
Conclusion
In this article, we have covered the fundamentals of reinforcement learning and discussed some popular reinforcement learning algorithms, including Q-Learning, Deep Q-Networks, and Proximal Policy Optimization. As you progress in your deep learning journey, you will find that reinforcement learning provides a powerful framework for solving a wide range of complex decision-making problems.